诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
宁东基地:再造一个宁夏经济总量******
【新春走基层】
元旦,坐标西北。
日长一线,蓝天高远,空气中透着一丝清冷。而在宁夏宁东能源化工基地(以下简称宁东基地),企业车间处处是热火朝天的景象,全力冲刺首季“开门红”。
且不说人勤春来早。自治区赋予宁东“再造一个宁夏经济总量”的宏伟目标,它丝毫不敢怠慢。就在不久前,这里获评2022年全国化工园区高质量发展综合评价第五名,连续5年入围十强。
做好今年经济发展工作,宁东基地党工委副书记、管委会主任陶少华认为必须“三坚持”,即项目是生命线,好企业是本钱,企业家是财富。
以项目为抓手 豪气
往宁东基地最高处望去,那是宁夏派可威生物科技有限公司分离间甲酚和对甲酚的装置。
“二者沸点差很小,常规方法不可能将它们分开,我们在国内首创用尿素法进行分离,能耗低,环境污染小,产品转化率高。”该公司总经理王进世告诉记者。
间甲酚全球需求量是6万吨,我国需求量为1.9万—2万吨,这套装置设计产能1万吨,宁夏派可威生物科技有限公司能产出5500吨。
占地面积1600平方米、高度63.5米的整套装置正在进行保温收尾、单体打压等工序,上料投产指日可待。
以项目为抓手,鼓励企业把小规模装置转化成大生产示范,这是宁东基地开发建设20周年的传统。
刚刚过去的2022年,宁东基地经济运行稳中向好,预计全年地区生产总值达到620亿元,工业总产值接近2000亿元,固定资产投资增长15%以上,工业增加值占自治区的30%,财政总收入达到155亿元。
“要保持发展定力,把经济发展工作的着力点放在实体经济和产业项目上。”在2023年经济发展重大项目推进会上,陶少华郑重强调。
靠技术来发展 硬气
拿起遥控器,只见眼前的玻璃一会儿呈磨砂状,一会儿呈透明状,明暗变化即在瞬间。
宁夏中星显示材料有限公司的这款智能调光玻璃,通电透明,断电雾化,可用于室内空间隔断、博物馆橱窗、银行等处。
“其实就是把液晶膜安装在两层玻璃之间,高温高压加工成夹层玻璃。”该公司技术负责人陈少华说。
铆力关键核心技术,企业实现了智能调光玻璃用液晶材料产品的产业化生产,2021年销售额1.6亿元,2022年至少翻一番。
靠技术取得长足发展,宁夏中星显示材料有限公司是宁东基地的缩影。
“我们始终充分发挥企业创新主体作用,着力打赢关键核心技术攻坚战。”宁东基地科技和信息化局局长易静华表示。
该局全年新立项实施本级科技创新项目34项,争取自治区重点研发计划项目16项,在煤化工、精细化工、新材料、清洁能源等领域攻克一批技术瓶颈。
去年,宁东基地全年登记自治区科技成果36项,较上年翻了两番;完成技术合同成交额2.5亿元,同比增长20%,成绩喜人。
用科技作支撑 提气
走在宁东基地,铁塔林立,管道纵横,厂房俨然,机器轰鸣声不绝于耳。
国能宁煤集团合作开发的高性能甲醇制丙烯工业催化剂替代进口;宝丰能源集团建成全球最大的太阳能电解制氢储能及应用示范项目;宁东瑞华新材料公司研制的特种抗冻防水涂料达到国际水准……
一批新动能的催生,离不开科技持续加码。
易静华给记者摆出几组数字。2022年,宁东基地全年本级财政科技创新支出9433万元,是上年的6.5倍;争取自治区项目经费4100万元,撬动企业研发投入预计突破14亿元,较上年增长25%;预计全社会R&D投入强度达到2.27%,较自治区平均水平高0.69个百分点。
宁东基地蓬勃发展,是宁夏切实把科技创新摆在经济社会发展核心位置的写照。
连日来,自治区党委宣传部举办系列新闻发布会,对党委经济工作会议精神进行解读。
1月4日,宁夏科技厅厅长徐龙在会上表示,自治区第十三次党代会把创新驱动战略作为“五大战略”之首,为优化创新环境、激发全社会创新动力提供了更为坚实的保障。
“科技系统将扎实推进科技创新‘四大工程’,全力抓好‘双百科技支撑行动’,努力为全区经济社会高质量发展提供更有力的科技支撑。”徐龙说。(本报记者 王迎霞)